NIMH Battery Material Safety Data Sheet

I - Product Identification and Company/Undertaking

Product Name: Nickel Metal Hydride (NIMH) Rechargeable Battery
Brand: TENERGY
Chemical System: Nickel/Metal Hydride
Nominal Voltage: 1.2V
Designated for Recharge: X Yes __ No
Effective Date: 05.08.2006

II - Hazardous Ingredients

IMPORTANT NOTE: The product is a manufactured article as described in 29 CFR 1910.1200. The battery cell is contained in a hermetically-sealed case, designed to withstand temperatures and pressures encountered during normal use. As a result, during normal use, hazardous materials are fully contained inside the battery cell. The battery cell should not be opened or exposed to heat because exposure to the following ingredients contained within could be harmful under some circumstances. The following information is provided for the user's information only.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS No.</th>
<th>OSHA PEL (mg/m³)</th>
<th>ACGIH TLV (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel (powder)</td>
<td>7440-02-0</td>
<td>1 TWA</td>
<td>1 TWA</td>
</tr>
<tr>
<td>Nickel hydroxide</td>
<td>12054-48-7</td>
<td>1 TWA</td>
<td>1 TWA</td>
</tr>
<tr>
<td>Cobalt</td>
<td>7440-48-4</td>
<td>0.1 TWA</td>
<td>Dust & Fume 0.005</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439-96-5</td>
<td>Fume: 5 Ceiling Limit</td>
<td>Dust: 5 Fume: 1</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>7439-91-0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cerium</td>
<td>7440-45-1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Neodymium</td>
<td>7440-00-8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Potassium hydroxide</td>
<td>1310-58-3</td>
<td>NA</td>
<td>2 Ceiling Limit</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>1310-73-2</td>
<td>2 TWA</td>
<td>2 Ceiling Limit</td>
</tr>
<tr>
<td>Lithium hydroxide</td>
<td>1310-65-2</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

The information and recommendations set forth are made in good faith and believed to be accurate as of the date of preparation. TENERGY CORPORATION makes no warranty, expressed or implied, with respect to this information and disclaims all liabilities from reliance on it.

Notes: 1. Concentrations vary depending on the state of charge or discharge.
2. TWA is the time weighted average concentration over an 8-hour period.
III — Physical Data for Battery

<table>
<thead>
<tr>
<th>Melting point (°F)</th>
<th>Boiling point (°F)</th>
<th>% Volatile by Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Vapor Pressure (mm Hg)</td>
<td>Evaporation Rate Vapor</td>
<td>Density (Air = 1)</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Specific Gravity (H2O)</td>
<td>Solubility in Water</td>
<td>Appearance and Odor</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>No Odor</td>
</tr>
</tbody>
</table>

IV - Fire and Explosion Hazard Data

Flash Point: NA Lower Explosive Limit: NA Upper Explosive Limit: NA
Extinguishing Media: Any class of extinguishing medium may be used on the batteries or their packing material. Special Fire Fighting Procedures: Exposure to temperatures of above 212°F can cause venting of the liquid electrolyte.
Internal shorting could also cause venting of the electrolyte. There is potential for exposure to iron, nickel, cobalt, rare earth metals (cerium, lanthanum neodymium, and praseodymium), manganese, and aluminum fumes during fire; use self-contained breathing apparatus.

V – First Aid Measures
If electrolyte leakage occurs and makes contact with skin, wash with plenty of water immediately. If electrolyte comes into contact with eyes, wash with copious amounts of water fifteen (15) minutes, and contact a physician.

VI - Health Hazard Data

Threshold Limit Values: See Section II
Effects of a Single (Acute) Overexposure:
Inhalation: During normal use inhalation is an unlikely route of exposure due to containment of hazardous materials within the battery case. However, should the batteries be exposed to extreme heat or pressures causing a breach in the battery cell case, exposure to the constituents may occur. Inhalation of cobalt dusts may result in pulmonary conditions.
Ingestion: If the battery case is breached in the digestive tract, the electrolyte may cause localized burns.
Skin Absorption: No evidence of adverse effects from available data.
Skin Contact: Exposure to the electrolyte contained inside the battery may result in chemical burns.
Exposure to nickel may cause dermatitis in some sensitive individuals.
Eye Contact: Exposure to the electrolyte contained inside the battery may result in severe irritation and chemical burns.
The information and recommendations set forth are made in good faith and believed to be accurate as of the date of preparation. TENERGY CORPORATION makes no warranty, expressed or implied, with respect to this information and disclaims all liabilities from reliance on it.

Carcinogenicity:
Nickel has been identified by the National Toxicology Program (NTP) as reasonably anticipated to be a carcinogen. Cobalt has been identified by IARC as a 2B carcinogen. Other Effects of Repeated (Chronic) Exposure:
Chronic overexposure to nickel may result in cancer; dermal contact may result in dermatitis in
sensitive individuals.

Medical Conditions Aggravated by Overexposure:
A knowledge of the available toxicology information and of the physical and chemical properties of the material suggests that overexposure is unlikely to aggravate existing medical conditions.

Emergency and First Aid Procedures:

Swallowing: Do not induce vomiting. Seek medical attention immediately.
Skin: If the internal cell materials of an opened battery cell come into contact with the skin, immediately flush with water for at least 15 minutes.

Inhalation: If potential for exposure to fumes or dusts occurs, remove immediately to fresh air and seek medical attention.

Eyes: If the contents from an opened battery come into contact with the eyes, immediately flush eyes with water continuously for at least 15 minutes. Seek medical attention.

Section VII - Reactivity Data

The batteries are stable under normal operating conditions.

Hazardous polymerization will not occur.

Hazardous decomposition products: oxides of nickel, cobalt, manganese, lanthanum, and cerium. Conditions to avoid: heat, open flames, sparks, and moisture.

Potential incompatibilities (i.e., materials to avoid contact with): The battery cells are encased in a non-reactive container; however, if the container is breached, avoid contact of internal battery components with acids, aldehydes, and carbamate compounds.

VIII - Spill and Leak Procedures

Spill and leaks are unlikely because cells are contained in an hermetically-sealed case. If the battery case is breached, don protective clothing that is impervious to caustic materials and absorb or pack spill residues in inert material. Dispose in accordance with applicable state and federal regulations.

IX - Safe Handling and Use (Personal Protective Equipment)

Ventilation Requirements: Not required under normal use.

The information and recommendations set forth are made in good faith and believed to be accurate as of the date of preparation. TENERGY CORPORATION makes no warranty.

Expressed or implied, with respect to this information and disclaims all liabilities from reliance on it. Respiratory Protection: Not required under normal use.
Eye Protection: Not required under
Gloves: Not required under normal use.
X - Precautions for Safe Handling and Use

Storage: Store in a cool place, but prevent condensation on cell or battery terminals. Elevated temperatures may result in reduced battery life. Optimum storage temperatures are between -31F and 95F.

Mechanical Containment: If there are special encapsulations or sealing requirements, consult your Tenergy Corporation representative about possible cell hazard precautions or limitations.

Handling: Accidental short circuit will bring high temperature elevation to the battery as well as shorten the battery life. Be sure to avoid prolonged short circuit since the heat can burn attendant skin and even rupture of the battery cell case.

Batteries packaged in bulk containers should not be shaken. Metal covered tables or belts used for assembly of batteries into devices can be the source of short circuits; apply insulating material to assembly work surface. If soldering or welding to the case of the battery is required, consult your TENERGY CORPORATION representative for proper precautions to prevent seal damage or external short circuit.

Charging: This battery is designed for recharging. A loss of voltage and capacity of batteries due to self-discharge during prolonged storage is unavoidable. Charge battery before use. Observe the specified charge rate since higher rates can cause a rise in internal gas pressure which may result in damaging heat generation or cell rupture and/or venting.

Labeling: If normal label warnings are not visible, it is important to provide a device label stating:

CAUTION: Do not dispose in fire, mix with other battery types, charge above specified rate, connect improperly, or short circuit, which may result in overheating, explosion or leakage of cell contents.

XI - Measures for fire extinction

In case of fire, it is permissible to use any of extinguishing medium on these batteries or their packing material. Cool exterior of batteries if exposed to fire to prevent rupture. Fire fighters should wear self-contained breathing apparatus.

XII - Ecological information

N.A

XIII - Recycling and Disposal

Tenergy Corporation encourages battery recycling. Our Nickel Metal Hydride batteries are not defined by the federal government as hazardous waste and are safe for disposal in the normal municipal waste stream.

DO NOT INCINERATE or subject battery cells to temperatures in excess of 212F. Such treatment can cause cell rupture.

XIV - Transportation

Tenergy Corporation sealed Nickel Metal Hydride batteries are considered to be "dry cell" batteries and are not subject to dangerous goods regulation for the purpose of transportation by the U.S. Department of Transportation (DOT), the International Civil Aviation Organization (ICAO), the International Air Transport Association (IATA) or the International Maritime Dangerous Goods regulations (IMDG). More information concerning shipping, testing, marking and packaging can be obtained from Labelmaster at
http://www.labelmaster.com. IATA requires that batteries being transported by air must be protected from short-circuiting and protected from movement that could lead to short-circuiting.

The information and recommendations set forth are made in good faith and believed to be accurate as of the date of preparation. Tenergy Corporation makes no warranty, expressed or implied, with respect to this information and disclaims all liabilities from reliance on it.

XV – Regulatory Information

Special requirement be according to the local regulatory

XVI – Other Information

The data in this Material Safety Data Sheet relates only to the specific material designated herein